SN54298, SN54LS298, SN74298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

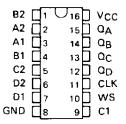
SDLS098 MARCH 1974 - REVISED MARCH 1988

- Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock
- Applications:

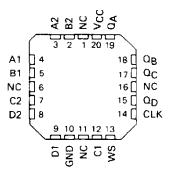
Dual Source for Operands and Constants in Arithmetic Processor; Can Release Processor Register Files for Acquiring New Data

Implement Separate Registers Capable of Parallel Exchange of Contents Yet Retain External Load Capability

Universal Type Register for Implementing Various Shift Patterns; Even Has Compound Left-Right Capabilities


description

These monolithic quadruple two-input multiplexers with storage provide essentially the equivalent functional capabilities of two separate MSI functions (SN54157/SN74157 or SN54LS157/SN74LS157 and SN54175/SN74175 or SN54LS175/SN74LS175) in a single 16-pin package.


When the word-select input is low, word 1 (A1, B1, C1, D1) is applies to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is clocked to the output terminals on the negative-going edge of the clock pulse.

Typical power dissipation is 195 milliwatts for the '298 and 65 milliwatts for the 'LS298, SN54298 and SN54LS298 are characterized for operation over the full military temperature range of -55°C to 125°C; SN74298 and SN74LS298 are characterized for operation from 0°C to 70°C.

SN5429B, SN54LS298 . . . J OR W PACKAGE SN7429B . . . N PACKAGE SN74LS29B . . . D OR N PACKAGE (TOP VIEW)

SN54LS298 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

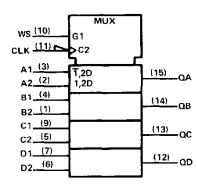
FUNCTION TABLE

INP	UTS		OUT	PUTS	
WORD SELECT	CLOCK	QΑ	αB	a_{c}	αD
L	;	a1	b1	c1	d1
н	1	a2	b2	c2	ď2
×	н	QAO	σ_{BO}	α_{CD}	Q_{D0}

H = high level (steady state)

L = low level (steady state)

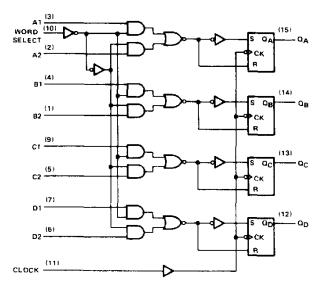
X = irrelevant (any input, including transitions)

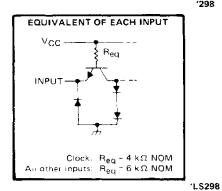

} = transition from high to low level

a1, a2, etc. - the level of steady state input at A1, A2, etc.

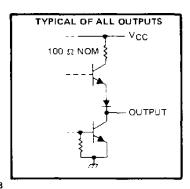
 $\Omega_{A0},\,\Omega_{B0},\,$ etc. = the level of $\Omega_{A},\,\Omega_{B},\,$ etc. entered on the most recent + transition of the clock input.

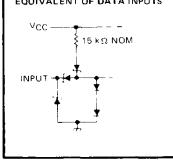
SN54298, SN54LS298, SN74298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

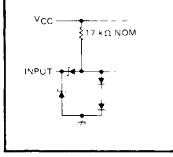

logic symbol†

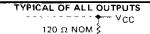

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

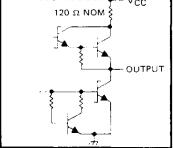
Pin numbers shown are for D, J, N, and W packages.


logic diagram (positive logic)


schematics of inputs and outputs


′298




EQUIVALENT OF DATA INPUTS

SN54298, SN74298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				-	-											7	٧
Input voltage												-	-			5.5	٧
Operating free-air temperature range	SN54298											-	-5	5°C	c to	125	°C
	SN74298											٠.		0°	'C t	o 70°	,C
Storage temperature													-6	5°() to	150	°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5429	8	;	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-800			-800	μА
Law-level output current, IQL				16			16	mA
Width of clock pulse, high or low level, tw		20			20			กร
	Data	15			15			
Setup time, t _{SU}	Word select	25			25			ns
	Data	5			5	-		
Hold time, th	Word select	0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage		2			V
VIL	Low-level input voltage		<u> </u>		0.8	V
VIK	Input clamp voltage	V _{CC} ≈ MIN, i ₁ = -12 mA			-1.5	V
νон	High-level output voltage	$V_{CC} = MIN$, $V_{1H} = 2 V$, $V_{1L} = 0.8 V$, $I_{OH} = -800 \mu$	A 2.4	3.2		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA			0.4	v
Ъ	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	mA
ин	High-level input current	V _{CC} ≈ MAX, V _I = 2.4 V			40	μΑ
HE	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6	mA
		SN54298	-20		-57	T ^
os	Short-circuit output current \$	V _{CC} = MAX SN74298	-18		-57	mA
Icc	Supply current	V _{CC} = MAX, See Note 2		39	65	mA

Teor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	C _L = 15 pF, R _L = 400 Ω,	18	27	ns
tphi_ Propagation delay time, high-to-low-level output	See Note 3	21	32	""

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at V_{CC} = 5 V, T_{A} = 25°C. §Not more than one output should be shorted at a time.

NOTE 2: With all outputs open and all inputs except clock low, I_{CC} is measured after applying a momentary 4.5 V, followed by ground, to the clock input.

SN54LS298, SN74LS298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH STORAGE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .						٠	•			7 V
Input voltage										7 V
Operating free-air temperature range:	SN54LS298				 ,					-55°C to 125°C
	SN74LS298									0 °C to 70°C
Storage temperature range										-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SI	V54LS2	98	S!	174LS2	98	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-40 0			-400	μА
Low-level output current, IOL		Ī		4			8	mA
Width of clock pulse, high or low level, tw		20			20			ns
	Data	15			15			
Setup time, t _{su}	Word select	25			25			ns
	Data	5			5			
Hold time, th	Word select	0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	D. G. 44575D		ST CONDITIONS	et	SI	154LS2	98	SP	174LS2	98	
	PARAMETER	1 = 3	ST CONDITION:	٥' 	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage				2			2			٧
VIL	Low-level input voltage				l		0.7			0.8	>
Vικ	Input clamp voltage	VCC = MIN,	I _I = −18 mA				-1.5			-1.5	~
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μs	Α	2.5	3.4		2.7	3.4		٧
17-	Levelous cut-ut-usitess	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	V
VOL	Low-level output voltage	V _I L = V _I L max		IOL = 8 mA					0.35	0.5	
11	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
ĺн	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
ЧL	Low-level input current	VCC = MAX,	V ₁ = 0.4 V			•	~0.4			-0.4	mΑ
los	Short-circuit output current §	V _{CC} = MAX			-20		-100	-20		-100	mA
lac	Supply current	V _{CC} = MAX,	See Note 2			13	21		13	21	mА

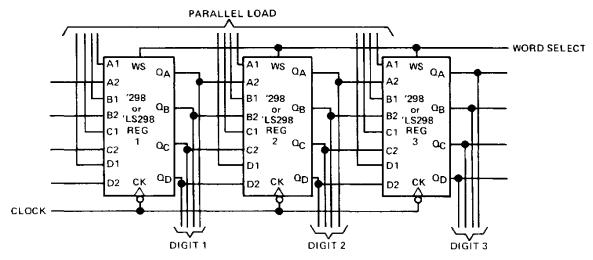
[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$C_L = 15 pF$, $R_L = 2 k\Omega$,		18	27	
tPHL Propagation delay time, high-to-low-level output	See Note 3		21	32	ns

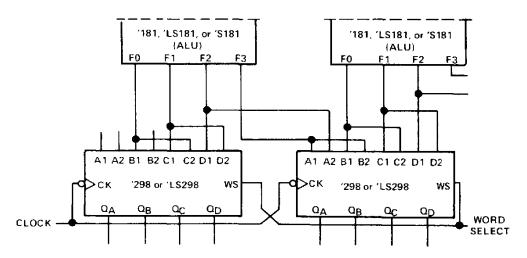
NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]frac{1}{4}$ All typical values are at V_{CC} = 5 V, T_{A} = 25 °C.


Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and all inputs except clock low, 1_{CC} is measured after applying a momentary 4.5 V, followed by ground, to the clock input.

TYPICAL APPLICATION DATA


This versatile multiplexer/register can be connected to operate as a shift register that can shift N-places in a single clock pulse.

The following figure illustrates a BCD shift register that will shift an entire 4-bit BCD digit in one clock pulse.

When the word-select input is high and the registers are clocked, the contents of register 1 is transferred (shifted) to register 2 and etc. In effect, the BCD digits are shifted one position. In addition, this application retains a parallel-load capability which means that new BCD data can be entered in the entire register with one clock pulse. This arrangement can be modified to perform the shifting of binary data for any number of bit locations.

Another function that can be implemented with the '298 or 'LS298 is a register that can be designed specifically for supporting multiplier or division operations. The example below is a one place/two-place shift register.

When word select is low and the register is clocked, the outputs of the arithmetic/logic units (ALU's) are shifted one place. When word select is high and the registers are clocked, the data is shifted two places.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated