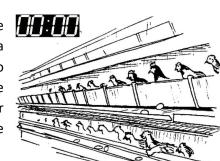


MEEC 2017-2018 1 de Fevereiro de 2018, 11:30

Antes de iniciar a prova, tenha em atenção o seguinte:


- A prova contempla 9 perguntas, distribuídas por 12 páginas, e tem a duração de 2h30m.
- ii. Existem 4 variantes distintas da prova: A, B, C e D.
- iii. A prova é sem consulta. Sobre a secretária <u>apenas</u> deve encontrar-se a sua identificação (cartão de estudante). NÃO PODE UTILIZAR CALCULADORA.
- iv. Identifique <u>todas</u> as folhas do enunciado com o seu <u>nome</u> e <u>número</u> mecanográfico. Recorde que logo após terminar a prova todas as páginas serão desagrafadas e separadas. Folhas não identificadas não serão cotadas!!!
- v. Resolva a prova no próprio enunciado. Para cada questão é fornecido um espaço próprio, dentro do qual deverá responder. A sua dimensão está ajustada ao tamanho expectável da resposta.
- vi. Excecionalmente, e caso realmente necessite, pode usar o espaço extra disponível das páginas em branco, colocadas ao longo da prova. Nesse caso, deve indicar junto ao enunciado da pergunta que a resposta à mesma se encontra na página que utilizou.
- vii. Justifique adequadamente todas as respostas.
- viii. Responda à prova com calma. Se não sabe responder a uma pergunta, passe à seguinte e volte a ela no fim.
- 1. Considere o seguinte número positivo X representado na base 8: X = 152₈.
 - a) Qual o número correspondente na base 10?......[1,0 val.]
 - b) Represente o simétrico deste número (-X) na base 2 em notação de complemento para 2 (8 bits). [0,5 val.]
 - c) Represente o número (-X) em hexadecimal......[0,5 val.]
 - a) $X = 1 * 8^2 + 5 * 8^1 + 2 * 8^0 = 64 + 40 + 2 = 106$
 - b) $X = 152_8 = 001101010_2 = 01101010_2$ (8 bits)
 - $-X = NOT(X) + 1 = 10010101 + 1 = 10010110_2$
 - c) $-X = 96_{16}$

MEEC 2017-2018 1 de Fevereiro de 2018, 11:30

2. De modo a otimizar a produção de ovos, o proprietário de um aviário pretende implementar um sistema automático de climatização. Para atingir este objetivo, a ventilação deverá ser ligada/desligada a determinadas horas do dia, dependendo da época do ano (Inverno/Verão), conforme ilustrado na tabela seguinte, em que as quadrículas <u>pretas</u> assinalam os períodos em que o aparelho deve estar <u>desligado</u>. Para o efeito, o sistema foi ligado a um relógio digital que dispõe de uma saída de 5 bits (H = H₄, H₃, H₂, H₁, H₀) com a indicação da <u>hora</u> atual.

HORA	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Inverno																								
Verão																								

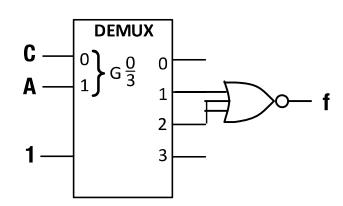
- b) Identifique a expressão algébrica correspondente à <u>forma mínima conjuntiva</u> desta função. <u>Justifique,</u> representando no mapa os agrupamentos correspondentes aos <u>implicados</u> da expressão......[1,0 val.]
- c) Na solução identificada na alínea anterior, qual o valor da função f(H) caso o relógio retorne (indevidamente) o código 26? <u>Justifique</u>......[0,5 val.]

$H_2H_1H_0$ H_4H_3	000	001	011	010)	110	111	101	100
00	0	0	1	0		1	1	0	1
01	0	1	1	0		0		1	0
11	IX	Х	Х	Х		Χ	Χ	Х	X
10	0	0	0	0	J	1	1	0	1
	J			/ (•

$$F(H_4H_3H_2H_1H_0) = (\overline{H_3} + H_0)(H_2 + H_0)(\overline{H_4} + H_2)(H_3 + H_1 + \overline{H_0})$$

Na solução mínima conjuntiva identificada, $f(26_{10}) = 0$, pois o Maxtermo 26 está agrupado no implicado $(\overline{H_3} + H_0)$.

MEEC 2017-2018 1 de Fevereiro de 2018, 11:30


- 3. Considere a função lógica $f(A, B, C) = \overline{(A \oplus C) \cdot B} \cdot (A \odot C)$, em que a variável A é a de maior peso.

A	В	С	$A \oplus C$	$\overline{(A \oplus C) \cdot B}$	A⊙C	f(A,B,C)
0	0	0	0	1	1	1
0	0	1	1	1	0	0
0	1	0	0	1	1	1
0	1	1	1	0	0	0
1	0	0	1	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	0
1	1	1	0	1	1	1

DEMU	X	
 $\binom{0}{1}$ $G^{\frac{0}{3}}$	0	
 1 5 3	1	
	2	
	3	

A	С	A⊙C	
0	0	1	M_0
0	1	0	M_1
1	0	0	M_2
1	1	1	M_3

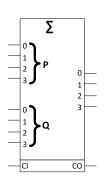
$$f(A,B,C) = A \odot C = M_1 M_2 = \overline{M_1 M_2} = \overline{m_1 + m_2}$$

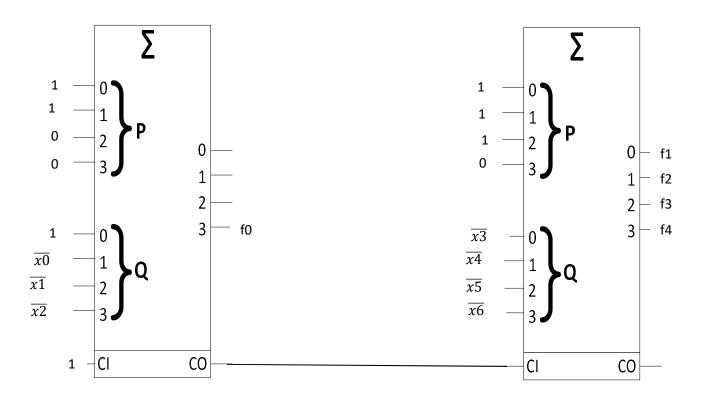
MEEC 2017-2018 1 de Fevereiro de 2018, 11:30

(Página deixada intencionalmente em branco.)

Aluno:	Nº
--------	----

MEEC 2017-2018 1 de Fevereiro de 2018, 11:30

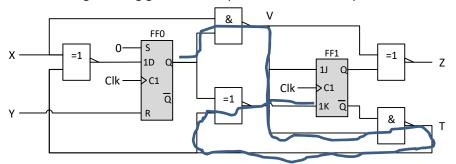



4. Pretende-se implementar uma unidade aritmética com saída de 8-bits que realiza a seguinte operação:

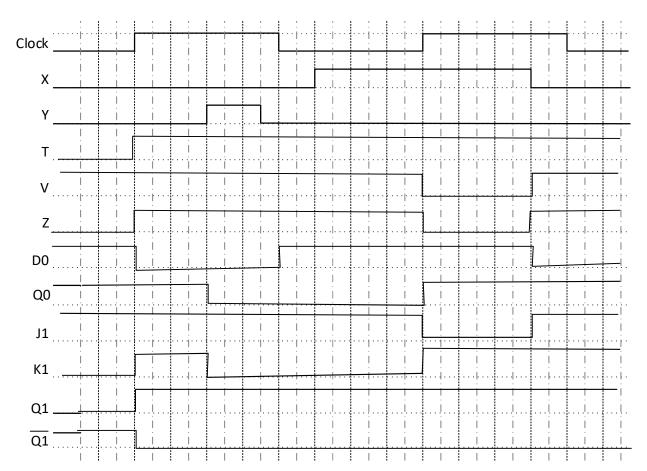
$$f(x) = \left\lfloor \frac{115 - 2x}{8} \right\rfloor$$

A entrada x = x(6:0), com **7-bits** de resolução, representa um valor compreendido no intervalo [-50, +50]. O operador [n] retorna o maior número inteiro não superior a n.

Exemplo:
$$f(-19) = \left\lfloor \frac{115 - 2 \times (-19)}{8} \right\rfloor = \left\lfloor \frac{153}{8} \right\rfloor = \lfloor 19,125 \rfloor = 19$$


$$f7 = f6 = f5 = 0$$

MEEC 2017-2018 1 de Fevereiro de 2018, 11:30



5. Considere o seguinte logigrama, correspondente a uma máquina de estados com entradas X e Y e saída Z.

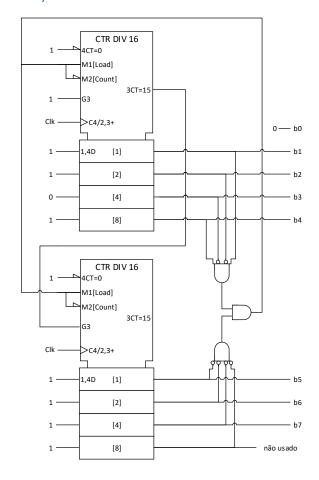
	t _p (ns)	t _{su} (ns)
FF D	10	5
FF JK	12,5	7,5
XNOR	10	-
NAND	7,5	-

a) Complete o seguinte diagrama temporal, desprezando os tempos de propagação e setup.[1,5 val.]

Tmin = tp(FFD)+Tp(nand)+tp(nand)+tp(xnor)+tsu(FFJK) = 42.5 ns

MEEC 2017-2018 1 de Fevereiro de 2018, 11:30

- 6. Considere o componente representado na figura ao lado.
 - a) Utilizando uma ou mais unidades deste componente (e outra lógica combinatória discreta que julgue necessário), projete um circuito com uma saída de 8-bits que produza a sequência de todos os números <u>pares</u> entre -10 e +18 (ou seja, deverá repetir continuamente a sequência: -10, -8, -6, ..., +16, +18, -10, -8, -6, ...).
 - b) Pretende-se que sejam realizadas 100 contagens completas desta sequência por segundo. Indique o valor da frequência do sinal de relógio que deverá ser utilizado. [0,5 val.]


Sugestão: comece por preencher a tabela com a contagem desejada e observe o padrão dos bits menos significativos.

		CTR DIV 16 4CT=0	
	\top	M1[Load]	
		M2[Count]	
		3CT=15 G3	
Ξlk		C4/2,3+	
			1
		1,4D [1]	
		[2]	
		[4]	
		[8]	
			•

Valor	Binário
-10	1 1111 011 <mark>0</mark>
-8	1 1111 100 <mark>0</mark>
-6	1 1111 101 <mark>0</mark>
-4	1 1111 110 <mark>0</mark>
-2	1 1111 111 0
0	0 0000 0000
+2	0 0000 001 <mark>0</mark>
+4	0 0000 010 <mark>0</mark>
+6	0 0000 011 <mark>0</mark>
+8	0 0000 100 <mark>0</mark>
+10	0 0000 101 <mark>0</mark>
+12	0 0000 110 <mark>0</mark>
+14	0 0000 111 <mark>0</mark>
+16	0 0001 000 <mark>0</mark>
+18	0 0001 001 <mark>0</mark>

Observações:

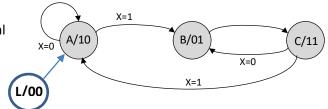
- O bit menos significativo (vermelho) é sempre igual a zero
- Se ignorarmos o bit menos significativo (vermelho), e estendermos a representação com mais um bit à esquerda (extensão do bit de sinal a verde), ficamos com uma contagem de 8-bits entre 251 (11111011) \rightarrow 0 (00000000) \rightarrow 9 (00001001) Implementação:
- Usar contador de 8-bits (por associação de dois contadores de 4-bits)
- Ativação do carregamento paralelo sempre que atingir o valor (00001001), carregando nesse instante o valor (11111011).

Contagem de 100 sequências completas por segundo. Cada sequência tem 15 valores. Total = $100 \times 15 = 1500 \text{ valores por segundo} \rightarrow f = 1500 \text{ Hz}$

MEEC 2017-2018 1 de Fevereiro de 2018, 11:30

(Página deixada intencionalmente em branco.)

Aluno: №	<u>0</u>
----------	----------


MEEC 2017-2018 1 de Fevereiro de 2018, 11:30

7. Considere o seguinte diagrama de estados de um circuito sequencial síncrono, caracterizado por uma entrada (X) e duas saídas (P1,P0). A <u>codificação dos estados</u> é dada na seguinte tabela:

Codificação dos	Estados (Q ₁ Q ₀)	_
Α	10	\leftarrow
В	11	
С	01	
	01	-

 $\leftarrow \textit{Estado inicial}$

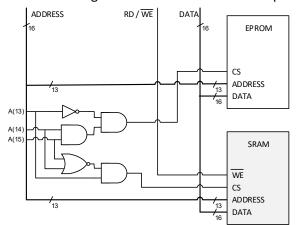
- c) Sintetize as funções lógicas mínimas correspondentes às entradas dos flip-flops e às saídas do circuito. Considere a utilização de flip-flops do tipo JK......[1,5 val.]

EA	Q1	Q0	Χ	ES	Q1 ⁺	Q0⁺	P1	P0	J1	K1	JO	K0
	0	0	0	Α	1	0	0	0	1	Χ	0	Х
	0	0	1	Α	1	0	0	0	1	Х	0	Х
C	0	1	0	В	1	1	1	1	1	Х	Χ	0
	0	1	1	Α	1	0	1	1	1	Χ	Х	1
	1	0	0	Α	1	0	1	0	Χ	0	0	Х
Α	1	0	1	В	1	1	1	0	Х	0	1	Х
В	1	1	0	С	0	1	0	1	Χ	1	Χ	0
В	1	1	1	С	0	1	0	1	Х	1	Χ	0

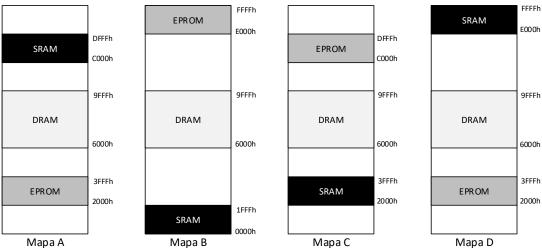
	J ₁			K ₁			J ₀			Ko			P ₁				P ₀							
Q_1 Q_0 X	00	01	11	10	00	01	11	10	00	01	11	10	00	01	11	10	00	01	11	10	00	01	11	10
0	1	1	1	1	Х	Х	Х	Х	0	0	Х	Х	Х	X	1	0	0	0	1	1	0	0	1	1
1	X	Х	Х	X	0	0	1	1	0	1	Х	х	Х	Х	0	0	1	1	0	0	0	0	1	1
	$J_1 = 1$			$K_1 = \mathbf{Q}_0$			$J_0 = Q_1 X$			$K_0 = \overline{Q_1} X$			$P_1 = $			$J_1 = Q_0$								

MEEC 2017-2018 1 de Fevereiro de 2018, 11:30

(Página deixada intencionalmente em branco.)


Aluno:	Nº	
--------	----	--

MEEC 2017-2018 1 de Fevereiro de 2018, 11:30


8. Considere o seguinte circuito referente a um plano de memória com uma EPROM e uma SRAM.

NOTAS:

- Assuma que os portos DATA de todas as memórias são tri-state;
- Assuma que o porto DATA da memória SRAM é bidirecional.

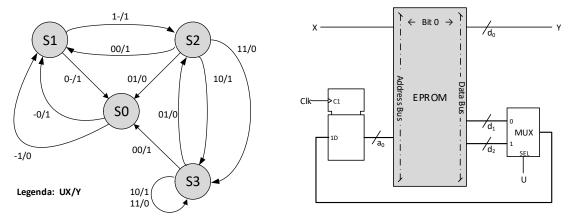
a) Indique qual dos seguintes mapas de memória (A, B, C, D) corresponde ao circuito apresentado ... [1,0 val.]

RESPOSTA: C

Capacidade = 2^{14} = 16k

c) Desenhe o circuito de descodificação que deve ser ligado à entrada CS da DRAM. Justifique...........[1,0 val.]

Endereço inicial = 0110 0000 Endereço final = 1001 1111


$$CS = A_{15} \cdot \overline{A_{14}} \cdot \overline{A_{13}} + \overline{A_{15}} \cdot A_{14} \cdot A_{13}$$

MEEC 2017-2018 1 de Fevereiro de 2018, 11:30

9. Considere o seguinte diagrama de estados de um circuito sequencial síncrono, caracterizado por 2 entradas (U,X) e 1 saída (Y). Pretende-se implementar este circuito através de uma máquina de estados micro-programada constituída por uma EPROM, um registo e um multiplexer. Todos os estados foram codificados utilizando o sistema de representação binário natural (i.e., S2="10").

- a) Identifique o significado e largura (nº bits) dos sinais representados no diagrama: a₀, d₂, d₁, d₀......[0,5 val.]
- c) Este circuito sequencial representa uma máquina de Moore ou de Mealy? <u>Justifique</u>, identificando uma situação concreta (neste circuito) que ateste essa classificação......[0,5 val.]

a₀: Estado Atual (EA) – 2 bits

d₂: Estado Seguinte 1 (ES1) – 2 bits

d₁: Estado Seguinte 0 (ESO) – 2 bits

d₀: Saída (Y) – 1 bit

EA(1)	EA(0)	X	ES1(1)	ES1(0)	ESO(1)	ESO(0)	Υ
0	0	0	0	1	0	1	1
0	0	1	0	1	0	1	0
1	0	0	0	1	1	1	1
1	0	1	0	0	1	1	0

Máquina de Mealy, pois a saída Y depende diretamente da entrada X.