Aluno Nº

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores Licenciatura em Engenharia Física Tecnológica

Sistemas Digitais

Exame de 1ª Época - 24 de Janeiro de 2001

Antes de começar o exame leia atentamente esta folha de rosto

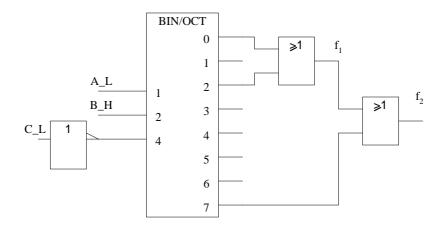
- 1. A mesa de exame apenas deve ter a identificação do aluno (<u>cartão de estudante</u> e <u>bilhete de identidade</u> ou outro documento oficial com fotografia)
- 2. <u>Identifique todas as folhas do enunciado</u>. A não identificação de uma folha de exame acarreta a sua destruição automática.
- 3. Responda apenas na folha de exame. Utilize as costas das folhas para rascunho.
- 4. Para cada questão do exame é fornecido um espaço, devidamente enquadrado, dentro do qual deverá responder. O tamanho do enquadramento está ajustado ao tamanho expectável da resposta. Respostas que se prolongam para além do enquadramento de cada pergunta apenas significam que o aluno está a responder desadequadamente, pelo que serão devidamente penalizadas.
- 5. As cotações das perguntas encontram-se indicadas à esquerda, a cheio entre parêntesis.
- 6. Duração do exame: 2 horas.
- 7. A não entrega do exame tem o mesmo significado que a não comparência ao exame.

Grupo I – Circuitos Combinatórios Básicos

- 1. Dado o seguinte Quadro de Karnaugh da função booleana simples f:
- a) [2 val] Minimize a função de modo a obter uma forma normal disjuntiva mínima.

BC DE	00	01	A=0 11	10
00	0	1	0	1
01	Х	1	Х	1
11	1	Х	1	Х
10	1	0	X	0

\ 50	A=1				
BC DE	00	01	11	10	
00	0	x	0	0	
01	0	1	х	1	
11	0	х	Х	х	
10	0	0	1	0	


b) [1 val] Identifique um Implicante Primo não Essencial (IP) e um Implicante Primo Essencial (IPE). Justifique

Alu	ino	Nº	
			_
_			
2.	Considere a seguinte função:		
	$g(A, B, C) = (\overline{A} + B) \cdot (B + \overline{C})$		
a)	[1 val] Transforme algebricamente a função g para permitir a implementação directa utilizando po	rtas NOR	
b)	[1 val] Desenhe o logigrama correspondente à implementação da função g com o menor númer	o de portas lógicas co	m
	saída do tipo open collector (OC) .		

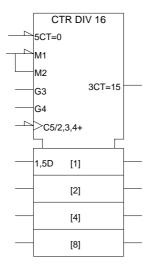
A	luno	Nº

Grupo II – Circuitos Combinatórios Integrados

1. Considere o seguinte circuito combinatório (CC)

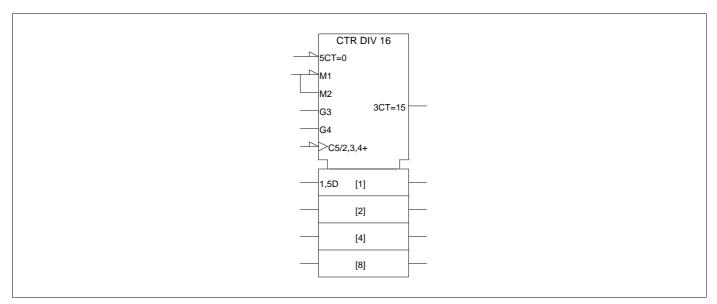
a) [1.5 val] Assumindo as entradas A e B activas e C inactiva. Determine os níveis lógicos nas linhas f1 e f2.

b) [1.5 val] Assumindo os seguintes valores paras os tempos de propagação máximos:

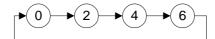

Dispositivos \ Tempos	$t_{_{\mathrm{PD}\mathrm{HI}_{*}}}$	$t_{_{\mathrm{PD}\mathrm{LH}}}$
Circuito Descodificador	12 ns	12 ns
Portas Lógicas OR e NOT	6 ns	8 ns

Determine o tempo máximo de propagação no circuito quando C comuta e as restantes entradas se mantêm activas.

No	Aluno
----	-------

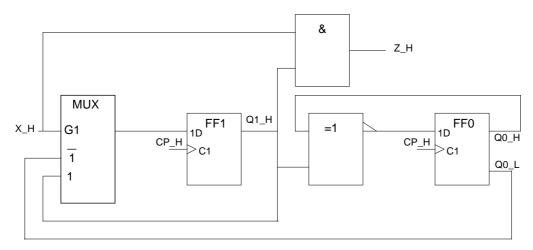

Grupo III – Contadores, Registos e Memórias

1. É dado o seguinte contador:



- a) [1 val] Qual o significado dos símbolos seguintes:
- 1. 5CT = 0
- 2. M2
- 3. >
- 4.

b) [1 val] Indique, no logigrama abaixo, quais os valores lógicos a aplicar a todas as entradas para que o contador passe do estado 11 ao estado 12.

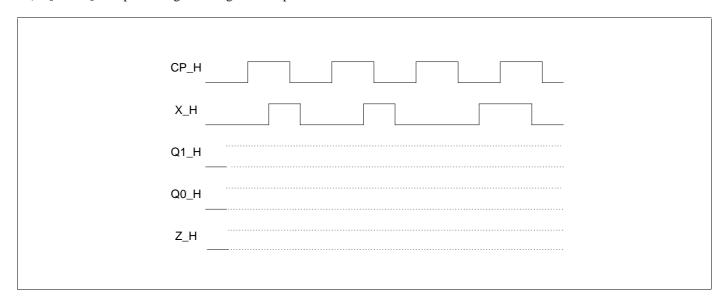

c) [2 val] Utilize este contador para concretizar a sequência de estados seguinte. Não introduza estados de lockout.

Aluno	Nº

Grupo IV – Circuitos Sequenciais Síncronos

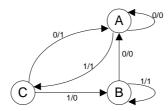
2. Considere o seguinte circuito sequencial (Entrada: X_H; Saída: Z_H):

a)	[1 val] Trata-se	e de uma	máquina	de Moore	ou de Mealy	? Justifique.
----	------------------	----------	---------	----------	-------------	---------------


b) [2 val] Desenhe o diagrama de estados correspondente.

Į	

c)	c) [1.5 val] Determine a expressão da frequência máxima de relógio para a qual o circuito funciona correctamente.			


Aluno _____

d) [1.5 val] Complete o seguinte diagrama temporal:

Νº

2. Considere o seguinte diagrama de estados.

a) [2 val] Defina a codificação de estados e projecte o circuito correspondente utilizando um Flip-Flop D por Estado. Determine apenas as equações de excitação dos FFs e a função da saída, não é necessário desenhar o logigrama.