Aluno Nº	
----------	--

Instituto Superior Técnico Licenciatura em Engenharia Aeroespacial Licenciatura em Engenharia Electrotécnica e de Computadores

Sistemas Digitais

Exame de 2ª Época – 17 de Julho de 2003

Antes de começar o exame leia atentamente esta folha de rosto

- 1. A mesa de exame apenas deve ter a identificação do aluno (<u>cartão de estudante</u> e <u>bilhete de</u> identidade ou outro documento oficial com fotografia)
- 2. <u>Identifique todas as folhas do enunciado</u>. A não identificação de uma folha de exame acarreta a sua <u>destruição automática</u>.
- 3. Responda apenas na folha de exame. Utilize as costas das folhas para rascunho.
- 4. Para cada questão do exame é fornecido um espaço, devidamente enquadrado, dentro do qual deverá responder. O tamanho do enquadramento está ajustado ao tamanho expectável da resposta. Respostas que se prolongam para além do enquadramento de cada pergunta apenas significam que o aluno está a responder desadequadamente, pelo que serão devidamente penalizadas.
- 5. As cotações das perguntas encontram-se indicadas à esquerda, a cheio entre parêntesis.
- 6. Todas as respostas têm de ser justificadas adequadamente.
- 7. Duração do exame: 2 horas e meia.
- 8. A não entrega do exame tem o mesmo significado que a não comparência ao exame.

Aluno Nº

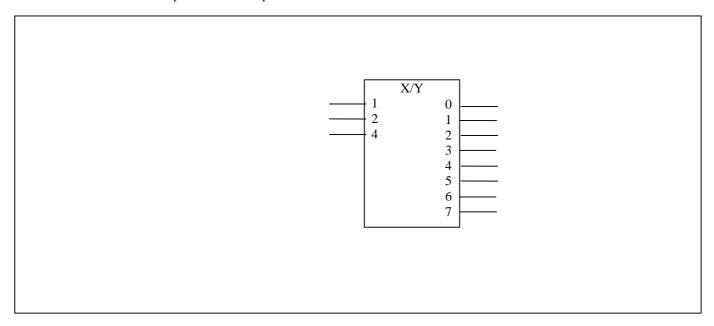
Grupo I – Circuitos Combinatórios Básicos

- 1. Considere a função $f(A,B,C,D,E) = \sum m(0,2,3,4,5,8,13,14,16,21,24,26,27,29,31) + \sum m_d(6,10,12,18,20,28)$.
- a) [0,5 val] Complete o mapa de Karnaugh,

		A=0		
	DE			
BC	00	01	11	10
00				
01				
11				
10				

		A=1		
ВС	DE 00	01	11	10
00				
01				
11				
10				

b) [1 val] Indique um Implicante primo essencial e um Implicante primo não Essencial. Justifique.

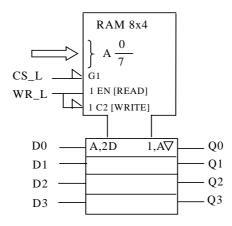

c) [1,5 val] Utilize o método Karnaugh para obter a expressão mínima da função f (A,B,C,D,E) como uma soma de produtos.

Αlι	uno	Nº
2.	[1 val] Determine a veracidade ou falsidade da relação	
	$(A+B)\cdot (\overline{A}+C)\cdot (B+C) \Leftrightarrow (A+B)\cdot (\overline{A}+C)$	
3.	Considere a função lógica	
	$f(A, B, C, D) = (A+B) \cdot C + (\overline{B}+D) \cdot (A+C)$	
	a) [1 val] Efectue a manipulação da função f(.) de modo a ser realizada com portas lógicas NOR	
<u> </u>	b) [0,5 val] Desenhe o logigrama correspondente à implementação da função f(.) com portas lógic	icas NOR.

Aluno	Nº
	1

Grupo II - Circuitos Combinatórios Integrados, Memórias

- 1. Pretende-se projectar um circuito que recebe um número binário de 3 bits $(a_2a_1a_0)$ e indica na respectiva saída (b_1b_0) o número de 1s existentes em $(a_2a_1a_0)$. Exemplo para $a_2a_1a_0=101$ obtém-se $b_1b_0=10$ (2 em binário)
 - a) [1 val] Implemente o circuito utilizando o descodificador indicado na figura. Atenção: Só pode utilizar portas adicionais do tipo OR e/ou do tipo AND.



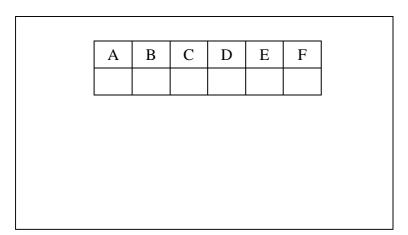
b) [1,5 val] Determine o tempo de propagação máximo do circuito realizado em a).
 Utilize os dados seguintes e justifique a sua resposta.

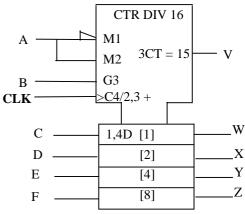
			TpLH	TpHL
X/Y	Níveis	de	20 ns	39 ns
	atraso 2			
	Níveis	de	25 ns	37 ns
	atraso 3			
OR			18 ns	20 ns
AND			22 ns	15 ns

Aluno Nº	
----------	--

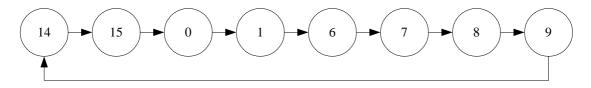
2. Pretende-se utilizar circuitos de memória, cujo símbolo é indicado a seguir, para realizar uma memória com 16 palavras de 8 bits cada.

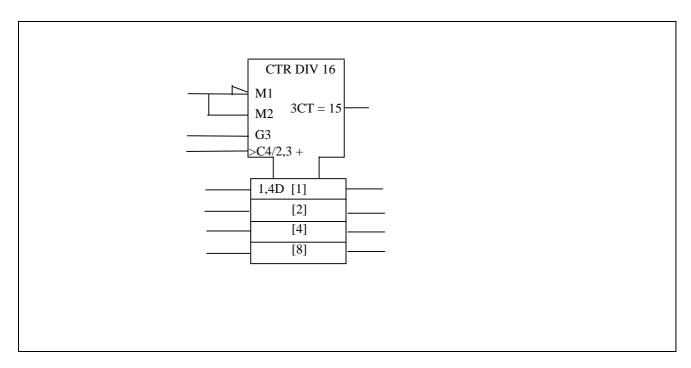
a) [0,5 val] Indique o número de circuitos RAM 8x4 necessários. Indique também o número de bits que são necessários para endereçar as 16 palavras. **Justifique**.


b) [1 val] Esboce o esquema de ligações dos circuitos RAM 8x4 de modo a construir o circuito que é pedido.

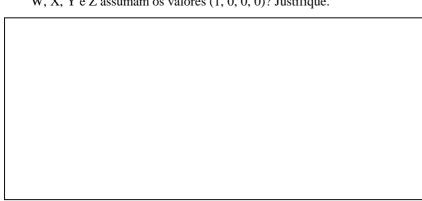

Nº

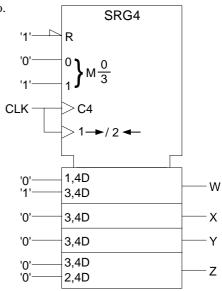
Grupo III - Contadores e Registos


- 1. Considere o contador que se encontra na figura, no lado direito.
- a) [1 val] Admita que o contador está inicialmente no estado 10. Determine os valores lógicos nas entradas do contador para que, após 1 impulso positivo de relógio, o contador passe a ter nas saídas os valores indicados abaixo.


	Z	Y	X	W	V
Inicialmente	1	0	1	0	0
Após Impulso CLK	1	1	1	1	0

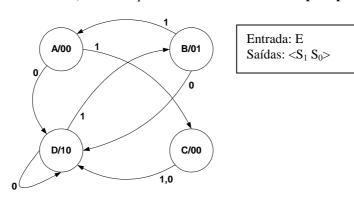
b) [2 val] Utilizando o contador e uma única porta lógica discreta adicional realize um circuito que efectue a sequência de contagem seguinte. Justifique.




Aluno	Nº
Aluno	N°

- Considere o registo de deslocamento que se encontra na figura, no lado direito.
- [1 val] Admita que o registo está inicialmente no estado (W, X, Y, Z) = (1, 1, 1, 0).Mantendo constantes os valores lógicos indicados nas entradas,

indique quantos ciclos de relógio são necessários para que

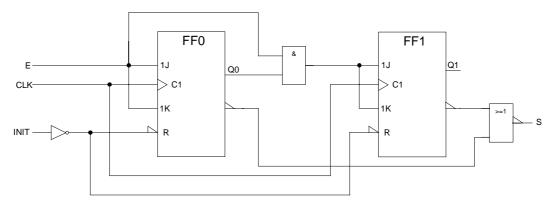

W, X, Y e Z assumam os valores (1, 0, 0, 0)? Justifique.

Grupo IV - Circuitos Sequenciais Síncronos

1. Considere a máquina de estados, com uma entrada E e 2 saídas S₁ e S₀, definida pelo diagrama de estados seguinte. Projecte (de acordo com as alíneas abaixo) circuitos que a concretizem utilizando Flip-Flops D "edge-triggered" positivos.

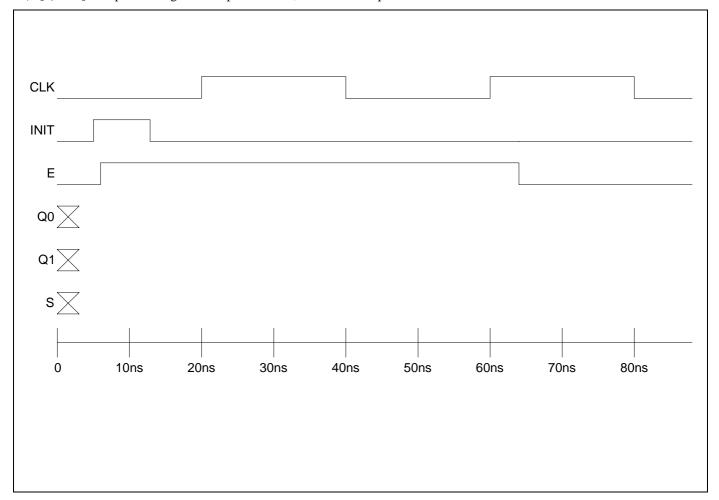
[2 val] Determine as equações de excitação dos FFs e as funções das saídas, para uma concretização do circuito utilizando 1FF/estado ("one-hot enconding").

Aluno	Nº
-------	----


b) [2 val] Determine as equações de excitação dos FFs e as funções das saídas, para uma concretização do circuito utilizando síntese clássica (usando o menor nº possível de FFs) e com a codificação de estados abaixo indicada:

	Q1	Q0
A	0	0
В	0	1
С	1	0
D	1	1

Aluno	Nº	
c) [1 val] Desenhe o logigrama correspondente ao circuito definido em b).		_


Nº

2. Considere o circuito sequencial abaixo.

Parâmetros	FF		AND	NOR	NOT
tSU		3ns			
tH		1ns			
tPHL	de CLK para Q, Q'	15ns	10ns	20ns	5ns
tPLH	de CLK para Q, Q'	10ns	15ns	15ns	5ns
tPHL	de R,S para Q, Q'	5ns			
tPLH	de S,R para Q, Q'	5ns			

a) [1,5 val] Complete o diagrama temporal abaixo, considerando que o estado inicial do circuito é desconhecido.

