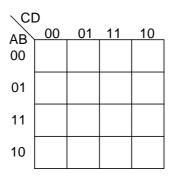
Aluno	Nº

Instituto Superior Técnico Licenciatura em Ciências Informáticas Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia Electrotécnica e de Computadores

Sistemas Digitais

Exame de 2ª Época – 3 de Fevereiro de 2004

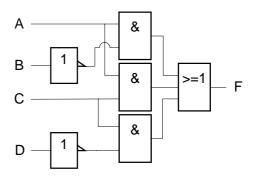

Antes de começar o exame leia atentamente esta folha de rosto

- 1. A mesa de exame apenas deve ter a identificação do aluno (<u>cartão de estudante</u> e <u>bilhete de identidade</u> ou outro documento oficial com fotografia)
- 2. <u>Identifique todas as folhas do enunciado</u>. A não identificação de uma folha de exame acarreta a sua destruição automática.
- 3. Responda apenas na folha de exame. Utilize as costas das folhas para rascunho.
- 4. Para cada questão do exame é fornecido um espaço, devidamente enquadrado, dentro do qual deverá responder. O tamanho do enquadramento está ajustado ao tamanho expectável da resposta. Respostas que se prolongam para além do enquadramento de cada pergunta apenas significam que o aluno está a responder desadequadamente, pelo que serão devidamente penalizadas.
- 5. As cotações das perguntas encontram-se indicadas à esquerda, a cheio entre parêntesis.
- 6. Todas as respostas têm de ser justificadas adequadamente.
- 7. Duração do exame: 2 horas e meia.
- 8. A não entrega do exame tem o mesmo significado que a não comparência ao exame.

Aluno Nº	
----------	--

Grupo I – Circuitos Combinatórios Básicos

1. Considere a função booleana $f(A,B,C,D) = A\overline{B}C + ABCD + BC\overline{D} + ACD + B\overline{C}\overline{D}$


a)	[1	vall	Preencha	o mana	de	Karnaugh	e obte	nha a	forma	conjuntiv	a mínima
~,	L-	1		0 11100 0 00			• • • • • •			• • • • • • • • • • • • • • • • • • • •	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

b)	[0,5 val] Manipule algebricamente a expressão anterior de modo a permitir uma implementação directa usando
	apenas portas lógicas NOR e NOT.

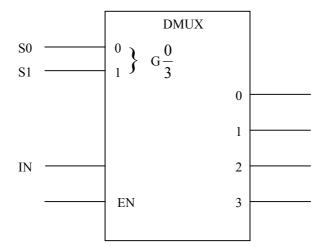
Aluno ______ Nº

2. Considere o circuito representado na figura.

Componente	t _p HL (ns)	t _p LH (ns)	
NOT	18	15	
AND	22	27	
OR	25	21	

a) [1,5 val] Determine o atraso máximo entre cada uma das entradas A, B, C, D e a saída do circuito, admitindo em cada um dos casos que as restantes linhas permanecem fixas. Identifique a transição (HL ou LH) numa das entradas e o valor das restantes variáveis que conduzem ao tempo de propagação máximo através do circuito.

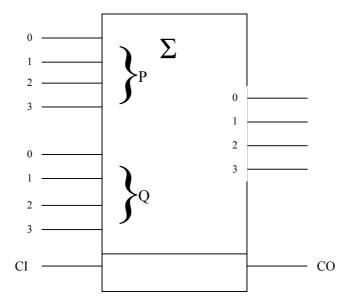
3. Considere o seguinte mapa de Karnaugh de 5 variáveis.


AB	0 0	0 0 1	0 1 1	0 1 0	1 1 0	1 1 1	1 0 1	1 0 0
00	0	0	Х	1	1	1	0	1
01	0	1	0	0	0	1	0	0
11	0	0	0	1	Х	0	0	Х
10	1	0	1	0	1	0	Χ	1

a) [1 val] Assinale no mapa o implicado $A + \overline{B} + E$. Indique, justificando, se o implicado é primo.

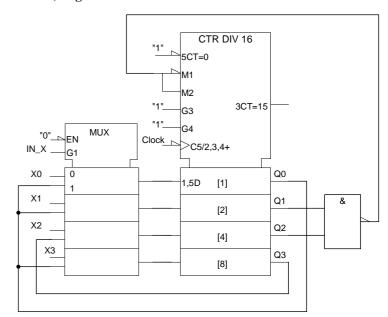
Aluno	Nº

Grupo II – Circuitos Combinatórios Integrados


1. a) [1 val] Usando DEMUXs 1:4 do tipo apresentado abaixo e portas lógicas elementares desenhe um DEMUX 1:8.

Aluno	N ₀
2. a) [2 val] Pretende-se sintetizar um circuito com 3 entradas A2 A1 A0 e duas saídas N1 N0. As número de bits a 1 na palavra A2 A1 A0. Exemplos: para A2 A1 A0 = 010 temos N1 N0 = 01, para N1 N0 = 10. Implemente o circuito pretendido usando um descodificador de 3 entradas (saídas a lógicas elementares.	A2 A1 A0 = 110 temo
b) [1 val] Pretende-se realizar um circuito com 6 entradas X2 X1 X0 e Y2 Y1 Y0 e com 2 saídas Z1 e indicar o número total de bits em que as palavras X2 X1 X0 e Y2 Y1 Y0 diferem. Exemplos: para X2 X1 X0 = 111 e Y2 Y1 Y0 = 101 temos Z1 Z0 = 01, para X2 X1 X0 = 011 e Y2 Z2 Z1 = 10. Sintetize o circuito pretendido usando portas lógicas elementares e o circuito desenhad [Nota: se não resolveu a alínea a), pode contudo assumir a existência de um tal circuito]	2 Y1 Y0 = 101 temos

Aluno Nº

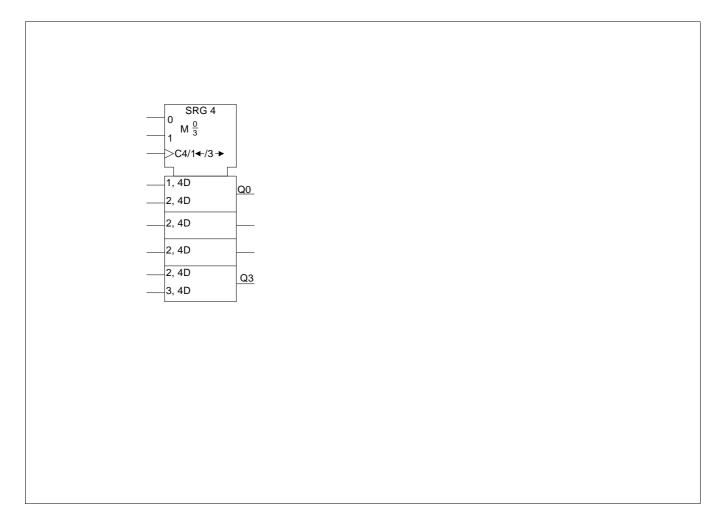

3. [1 val] Sejam A3 A2 A1 A0 e B3 B2 B1 B0 as representações binárias (em complemento para 2) de dois números. Pretende-se realizar um circuito somador/subtractor para estas duas palavras. A escolha da operação aritmética a realizar é efectuada por uma entrada adicional X: se X=0 realiza-se a adição, se X=1 realiza-se a subtracção. Não se preocupe com situações de overflow. Implemente o circuito pretendido usando o circuito somador abaixo apresentado e portas lógicas elementares adicionais.

Aluno	Nº
-------	----

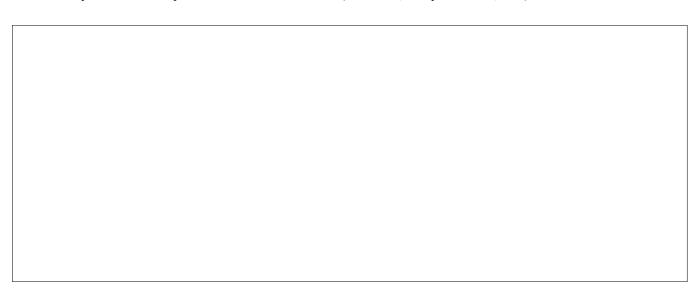
Grupo III – Contadores, Registos e Memórias

1. Considere a seguinte montagem:

a) [1 val] Assuma IN_X = 1 e X₃X₂X₁X₀ = 1011. Determine a sequência de estados, começando no estado 0000 e terminando no mesmo estado 0000.



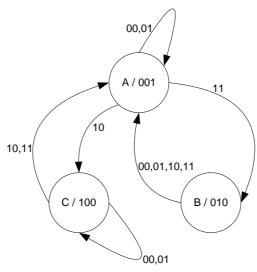
b) [1 val] Determine a frequência máxima de funcionamento para o circuito apresentado. Justifique a resposta.


Componente	Tsu	TpHL	TpLH
Contador	10ns	40ns	30ns
Multiplexer		25ns	20ns
NAND		10ns	10ns
		I.	I

Aluno	Nº
-------	----

- 2. Considere a seguinte sequência de estados (2,4,9,12,5,2,...)
 - a) [1,5 val] Utilizando o registo de deslocamento da figura e o menor número possível de portas lógicas adicionais implemente a referida sequência de estados. Justifique todas as opções.

b) [1 val] A solução da alínea anterior apresenta situações de "lock-out"? Justifique a resposta. Caso não tenha respondido à alínea anterior, apresente, justificando, um exemplo de uma hipotética situação de "lock-out" quando a sequência de estados pretendida corresponde à referida anteriormente (neste caso, a resposta vale 0,5 val).


Aluno	Nº

Grupo IV - Circuitos Sequenciais Síncronos

1. Considere o circuito sequencial, com duas entradas E_1 e E_0 e 3 saídas S_2 , S_1 e S_0 , definido pelo diagrama de estados seguinte.

Projecte-o (de acordo com as alíneas abaixo) utilizando **Flip-Flops D** "edge-triggered" positivos.

 $\begin{aligned} &Entrada: <&E_1 \ E_0>\\ &Saidas: <&S_2 \ S_1 \ S_0>\end{aligned}$

a) [2 val] Determine as equações de excitação dos FFs e as funções das saídas, para uma concretização do circuito utilizando 2 FFs, de acordo com a codificação de estados indicada.

Α	00
В	01
С	11

Alu	no	Nº	
b)	[1 val] Desenhe o logigrama correspondente ao circuito definido em a).		

	Г
Aluno	Nº
c) [1 val] Suponha que quer implementar a parte combinatória deste circuito sequencial usando 1 me microprogramado). Qual a dimensão mínima da memória necessária? Qual o seu conteúdo, considestados indicada? Justifique.	
A 00 B 01 C 11	
2. [1,5 val] Pretende-se projectar o controlador de uma máquina de distribuição de chocolates: A máquina entrega 1 chocolate quando recebe €1,50 em moedas; recebe 1 moeda de cada vez; ace cêntimos e de 1 euro; um sensor mecânico indica se foi recebida 1 moeda de 50 cêntimos ou se foi 1 euro (considere que existem 2 entradas: uma que indica a recepção de 1 moeda de 50 cêntimos, o recepção de 1 moeda de 1 euro); o circuito tem duas saídas: uma das saídas, quando activa, abre a chocolate ao cliente, a outra saída, quando activa, entrega 50 cêntimos de troco.	recebida uma moeda de e outra que indica a
Desenhe o diagrama de estados que concretiza a funcionalidade acima indicada. Justifique as Nota: nos aspectos omissos da especificação acima, tome as decisões que julgar mais razoáveis e j	