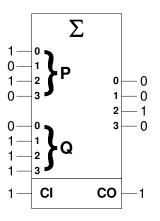
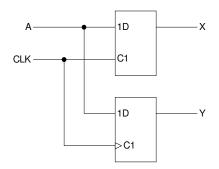
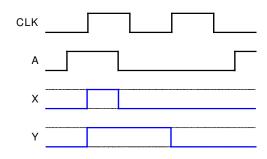
1. [2 val] Considere o circuito somador da figura abaixo.

De acordo com os valores lógicos indicados em cada uma das suas entradas, está-se a realizar a subtracção entre 2 números A e B representados em complemento para 2 e pertencentes ao intervalo [-8,+7].


Indique quais os valores decimais de A e B e quais os valores lógicos nas saídas do circuito. Justifique.

$$\begin{array}{c}
1 \\
1110 \\
1111 = -1 \\
+0101 \\
10100 \\
+4
\end{array}$$

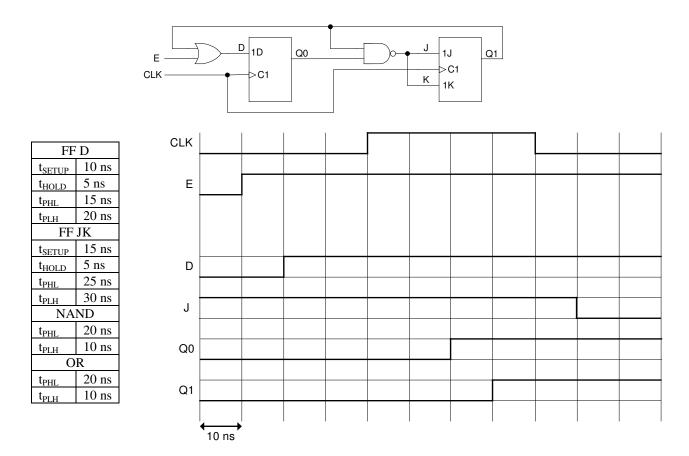

Em Q está o complemento para 1 de B, portanto Q+CI faz o complemento para 2 de B.


Em P está A.

$$A = +5 = 0101$$

 $B = +1 = 0001$ (complemento para 2 de -1 = 1111)

2. [2 val] Considere o circuito da figura e as formas de onda indicadas. Considere ainda X e Y inicialmente a 0. Esboce as formas de onda dos sinais X e Y, considerando os tempos de atraso dos elementos de memória desprezáveis face ao período de relógio.



O Latch lê a entrada A enquanto CLK=1.

O FF lê a entrada A apenas durante o flanco positivo do CLK.

3. a) [3 val] Considere o circuito da figura. Considere inicialmente Q1=Q0=0 (e J=1,D=0). Esboce as formas de onda dos sinais D, J, Q1 e Q0 tendo em conta as formas de onda indicadas no diagrama temporal para o relógio de frequência 12,5 MHz e para a entrada E, as características temporais dos elementos de circuito indicadas na tabela, e a escala indicada.

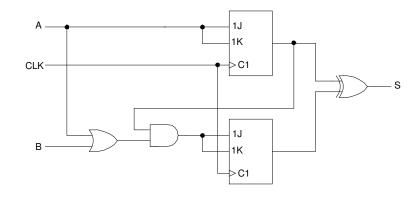
b) [1 val] Existe algum problema de violação de SETUP? Justifique.

a)

A variação de E faz D mudar de 0 para 1, 10ns (tPLH do OR) após a variação de E.

Na transição positiva de relógio D=1 e J=K=1, logo Q0 vai mudar para 1 20ns (tPLH do FFD) após a variação do CLK, e Q1 vai mudar para 1 30ns (tPLH do FFJK) após a variação do CLK.

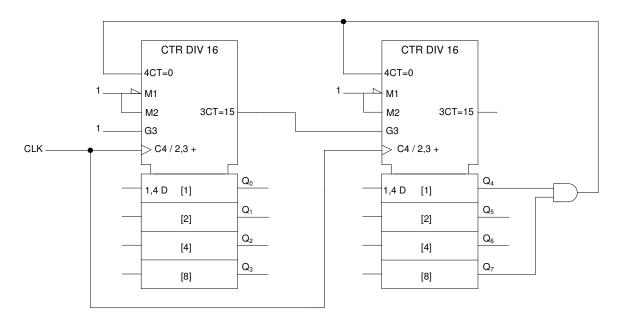
As variações de Q0 e Q1 de 0 para 1, vão provocar a variação de J de 1 para 0, 20ns (tPHL do NAND) após a variação do Q1 (último a chegar a 1).


b)

Não existem violações de SETUP:

A entrada D não varia nos $10\,\mathrm{ns}$ (tSETUP do FFD) anteriores ao flanco positivo de relógio, e as entradas J e K não variam nos $15\,\mathrm{ns}$ (tSETUP do FFJK) anteriores ao flanco positivo de relógio

4. [2 val] Indique qual é o período mínimo do relógio CLK que garante o funcionamento correcto do circuito, tendo em consideração as características temporais das portas lógicas e dos elementos de memória indicadas na tabela abaixo.


FF JK						
t_{SETUP}	5 ns					
t_{HOLD}	2 ns					
t_{PHL}	10 ns					
t_{PLH}	10 ns					
AND						
t_{PHL}	20 ns					
t_{PLH}	20 ns					
OR						
t_{PHL}	14 ns					
t_{PLH}	14 ns					
XOR						
t_{PHL}	26 ns					
t_{PLH}	26 ns					

Só existe um caminho de propagação de sinal entre FFs, e este caminho inclui apenas o FFJK e a porta AND.

$$\begin{split} t_{P\text{max}} &= \max \begin{cases} t_{PHL_JK} + t_{PHL_AND} = 10 + 20 = 30 ns \\ t_{PLH_JK} + t_{PLH_AND} = 10 + 20 = 30 ns \end{cases} \\ T_{CLK \, \text{min}} &= t_{P \, \text{max}} + t_{SETUP\ \ JK} = 35 ns \end{split}$$

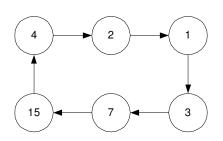
5. [2 val] Concretize um contador binário módulo 145, que conte de 0 a 144, utilizando os contadores abaixo e uma úmica porta lógica adicional. Justifique.

144=1001 0000

Ambos os contadores estão sempre em modo de contagem, M2=1. O contador da direita (4 bits de maior peso) é habilitado (entrada G3) pelo fim de contagem (saída 3CT=15) do contador da esquerda (4 bits de menor peso).

Quando é detectado o estado 144 é activada a entrada de inicialização (4CT=0) para que ambos os contadores transitem para o estado 0. O estado 144 é o primeiro em que Q7=Q4=1, portanto basta fazer o AND de Q7 com Q4 para detectá-lo.

6. a) [3 val] Com o registo de deslocamento abaixo e uma única porta lógica adicional, projecte um circuito que concretize a sequência indicada ao lado.


b) [1 val] Indique o que acontece se o registo se iniciar no estado 0.

a) Conforme indicado no símbolo:

o modo 2 faz um deslocamento à direita (de cima para baixo, no componente),

o modo 3 faz um deslocamento à esquerda (de baixo para cima, no componente),

o modo 1 faz um carregamento paralelo.

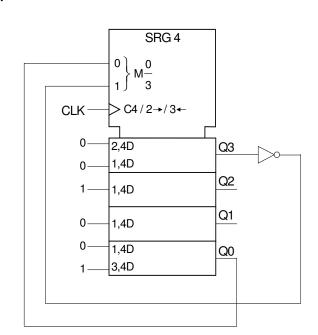
Q3	Q2	Q1	Q0	Operação a realizar	M1	M0	SIN2	SIN3	D3	D2	D1	D0
0	1	0	0	SHIFT RIGHT	1	0	0	X	X	X	X	X
0	0	1	0	SHIFT RIGHT	1	0	0	X	X	X	X	X
0	0	0	1	SHIFT LEFT	1	1	X	1	X	X	X	X
0	0	1	1	SHIFT LEFT	1	1	X	1	X	X	X	X
0	1	1	1	SHIFT LEFT	1	1	X	1	X	X	X	X
1	1	1	1	LOAD	0	1	X	X	0	1	0	0

Directamente da tabela:

$$M1 = \overline{O3}$$

$$M0 = Q0$$

$$SIN2 = 0$$

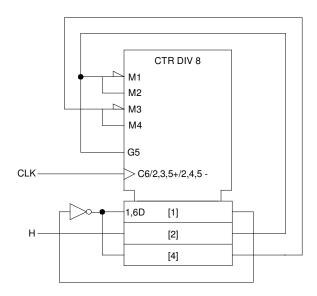

$$SIN3 = 1$$

$$D3 = 0$$

$$D2 = 1$$

$$D1 = 0$$

$$D0 = 0$$



b)

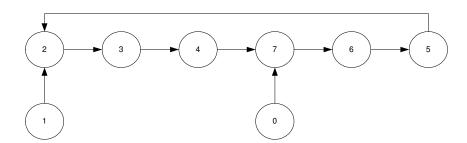
No estado 0 (Q3=Q2=Q1=Q0=0), M1=1 e M0=0 e portanto o registo vai fazer um deslocamento à direita. Como a entrada série respectiva está a 0, o registo mantém-se no estado 0.

7. a) [2,5 val] Indique a sequência de estados, começando no estado 2 e até voltar ao estado 2, concretizada pelo circuito abaixo.

b) [1,5 val] Este circuito tem problemas de lockout? Justifique.

a) Conforme indicado no símbolo:

Contagem ascendente: precisa das entradas 2, 3 e 5 activas (além do relógio). Contagem descendente: precisa das entradas 2, 4 e 5 activas (além do relógio). Carregamento paralelo: precisa da entrada 1 activa (além do relógio). A entrada G5 está sempre activa quando M2 está activo.


$$M 2 = Q1$$

$$M 4 = Q2$$

$$D2 = D0 = \overline{Q0}$$

$$D1 = 1$$

Esta	tual	Modo		Operação	Estado Seguinte			
Q2	Q1	Q0	M2	M4	Operação	Q2	Q1	Q0
0	1	0	1	0	+	0	1	1
0	1	1	1	0	+	1	0	0
1	0	0	0	1	LOAD	1	1	1
1	1	1	1	1	_	1	1	0
1	1	0	1	1	_	1	0	1
1	0	1	0	1	LOAD	0	1	0

b)

Estado $0 = 000 \rightarrow \text{LOAD } 111 \rightarrow \text{Estado } 7 \rightarrow \text{Não provoca } lockout.$ Estado $1 = 001 \rightarrow \text{LOAD } 010 \rightarrow \text{Estado } 2 \rightarrow \text{Não provoca } lockout.$

Este circuito não tem, portanto, problemas de lockout.